Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р.Е. Алексеева

Институт ядерной энергетики и технической физики

Кафедра «Ядерные реакторы и энергетические установки»

ТЕПЛОВОЙ И ГИДРАВЛИЧЕСКИЙ РАСЧЕТ АКТИВНОЙ ЗОНЫ РЕАКТОРА С ВОДЯНЫМ КИПЯЩИМ ТЕПЛОНОСИТЕЛЕМ

Методические указания к практическим занятиям, курсовому и дипломному проектированию

Нижний Новгород 2015

В водо-водяных кипящих реакторах, в которых кипящая вода одновременно служит теплоносителем и замедлителем, распределение энерговыделения по высоте активной зоны зависит от распределения объемного паросодержания. Поскольку истинного распределение объемного паросодержания при заданном расходе истинного теплоносителя определяется распределением энерговыделения по высоте активной зоны, то теплогидравлический расчет активной зоны такого реактора носит итерационный характер. Кроме этого, в случае кипящих реакторов с естественной циркуляцией теплоносителя его расход через реактор изначально не известен и определяется по результатам теплогидравлического расчета реактора. При ЭТОМ при заданной геометрии контура циркуляции, величина расхода теплоносителя при естественной циркуляции в значительной степени зависит от истинного объемного паросодержания в активной зоне и на подъемном участке контура.

В этом самом общем случае расчет кипящего реактора начинается с того, что задается, например, профиль энерговыделения по высоте активной зоны и определяются теплогидравлические характеристики реактора. Из последующего физического расчета в соответствии с полученным распределением истинного объемного паросодержания определяются распределения тепловых нейтронов и энерговыделения. Таким образом, проводится несколько итераций до сходимости расчета с заданной точностью.

В кипящих канальных реакторах с графитовым и тяжеловодным замедлителем изменения энерговыделения некипящим ПО высоте с кипением активной зоны практически не искажаются в связи теплоносителя в каналах, так как его доля по сравнению с объемом замедлителя в этих реакторах чрезвычайно мала. В этом случае упрощается процедура теплогидравлического расчета, существенно поскольку отпадает необходимость итерационного расчета распределения энерговыделения высоте активной зоны, обусловленного ПО соответствующим распределением объемного паросодержания в кипящем теплоносителе.

Общим и основным этапом теплогидравлического расчета любого типа реактора с кипящим теплоносителем является расчет распределения теплогидравлических параметров по высоте кипящего канала. При этом при заданном расходе теплоносителя и распределении энерговыделения по высоте активной зоны методика расчета основных теплогидравлических характеристик является общей для различного типа

реакторов с кипящим теплоносителем. В данной работе эта методика излагается на примере кипящего канального реактора с графитовым или некипящим замедлителем.

Исходные данные и методика расчета

Методику расчета теплогидравлических параметров канала с кипящим теплоносителем рассмотрим на примере расчета рабочего канала с кипящим водяным теплоносителем и графитовым замедлителем (типа РБМК). Перечень исходных данных при расчете в общем случае, а также численное значение исходных параметров применительно к рассмотренному примеру расчета приведены в табл. 5.1

Таблица 5.1

Название параметра	Условное	Размер-	Численное
	обозна-	ность	значение
	чение		для примера
			расчета
2	3	4	5
Тепловая мощность реактора	$Q_{ m тепл}$	Вт	$3,2.10^{9}$
Удельное объемное энерговыделение в	q_{v}	Вт/м³	$4 \cdot 10^{6}$
активной зоне			
Температура теплоносителя на входе в	$T_{\rm bx}$	°C	265
активную зону			
Давление теплоносителя на входе в активную	$P_{\scriptscriptstyle \mathrm{BX}}$	Па	$8 \cdot 10^{6}$
зону			
Среднее массовое паросодержание на выходе	x	-	0,15
активной зоны			
Высота активной зоны	H_0	М	7,0
Шаг расположения ТВС	а	М	0,25
Внутренний диаметр чехла ТВС	d	М	0,08
Число твэлов ТВС	n	-	18
Наружный диаметр оболочки твэла	d_2	М	13,5·10 ⁻³
Внутренний диаметр оболочки твэла	d_1	М	$11,7.10^{-3}$
Диаметр топливного сердечника	d_0	М	11,5.10-3
Диаметр центральной трубки	d	М	15.10-3
Конструкционный материал	сплав на основе циркония		
Материал топливного сердечника	диоксид	урана	-

Исходные данные для расчета

Последовательность, расчетные соотношения для расчета теплогидравлических характеристик кипящего канала в общем случае и результаты для примера исходных данных приведены в табл. 5.2-5.5.

Последовательность расчета, расчетные соотношения для расчета теплогидравлических характеристик кипящего канала в общем случае и результаты расчета для примера исходных данных

Параметр	Формула или исходное значение	Численные
		значения
Объем активной зоны, м ²	$V=Q_{\text{тепл}}/q_{v}$	800
Диаметр активной зоны, м	$D_0 = \sqrt{V/0,785H_0}$	12
Площадь одной ячейки, м ²	$f_{\rm H}=a^2$	0,0625
Число ячеек в активной зоне	$N=0,7854D_0^2/f_{\rm III}$	1810
Проходное сечение ТВС, M^2	$S_{\text{TBC}} = 0,7854[(d_{T\delta}^{\text{BH}})^2 - nd_2^2 - d^2]$	2,27.10-3
Гидравлический периметр ТВС, м	$\Pi_{\rm r} = \pi \big(d_{T\delta}^{\rm \tiny BH} + nd_2 + d \big)$	1,06
Тепловой периметр ТВС, м	$\Pi_{\text{тепл}} = \pi d_2 n$	0,763
Гидравлический диаметр, м	$d_{ m r}=4S_{ m TBC}/\Pi_{ m r}$	8,57.10-3

Таблица 5.3

Последовательность расчета, расчетные соотношения для расчета теплогидравлических характеристик кипящего канала в общем случае и результаты расчета для примера исходных данных

Параметры	Формула или исхо	Численное	
	для средней нагрузки	для максимальной	значение
		нагрузки	
1	2	3	4
Расход теплоносителя через один канал, кг/с Коэффициент	$G = \frac{Q_{\text{тепл}}}{(i_{\text{BX}}' - i_{\text{BX}} + ir_{\text{BX}})N}$	$G = \frac{Q_{\text{тепл}}k_r}{(i_{\text{BX}}' - i_{\text{BX}} + xr_{\text{BX}})N}$	4,73 5,203
неравномерности по радиусу Скорость циркуляции, м/с Перепал давления в канале в	$k_r=1$ $\omega_0=G/S_T$,1 гвср [′] вх	3,09
предположении, что в нем течет	$\Delta p = \xi'_{\text{mp}} \rho'_{\text{BX}} \omega^2_{0}$	$/2 + (g \rho'_{BX} H_0)$	86051
насыщения, Па (где g = 9,81) Приведенный коэффициент	$\xi'_{\pi\delta} = \sum_i \xi_{M}$ - где $\sum_i \xi_{M} = 9,5;$	$+ \xi_{\rm T\delta} \frac{H_0}{d_r} ,$ $\xi_{\rm TD} = 0,0035$	12,36
Линейный тегловой поток в центральной плоскости реактора, Вт/м	$q_{l,0} = rac{Q_{{ m ren}} k_Z}{H_0 N}$ где $k_v = 2$ -коэффициен объему; $k_z = 1,4$ -коэффици	$q_{l,0} = \frac{Q_{\text{тепл}}k_V}{H_0 N}$, г неравномерности по нент неравномерности по	0,0884 0,1263

Окончание табл. 5.3

1	2	3
Высота участка, на котором	$z = (i' - i) / \left(\frac{di' \Delta p'}{\Delta p} + \frac{\overline{q}l}{\Delta p} \right)$	3,1
происходит подогрев	$Z_n = (\mathcal{L}_{BX} - \mathcal{L}_{BX}) / (dp H_0 - G),$	
теплоносителя до	где $\frac{dt'}{dt} = 0,0048$ - табличная величина	
температуры насыщения, м	ap	
Среднее значение	$- q_{l,0} H (\pi \delta \pi (z_n + \delta))$	
линейного теплового потока	$q_{l} = \frac{H_{0}}{z_{n}} \frac{1}{\pi} \left(\cos \frac{H}{H} - \cos \frac{H}{H} \right),$	$106 \cdot 10^{3}$
на участке подогрева, Вт/м	где б=0,8 м – экстраполированная добавка;	
	$H=H_0+2\delta$ – экстраполированная высота, м	

Таблица 5.4

Последовательность расчета, расчетные соотношения для расчета теплогидравлических характеристик кипящего канала в общем случае и результаты расчета для примера исходных данных

Параметры	Формула	Источник
1	2	3
Энтальпия теплоносителя по высоте канала, Дж/кг, где <i>z</i> изменяется от 0 до <i>H</i> ₀ через	$i_{\rm T}(z) = i_{\rm BX} + \frac{q_{l,0}}{G} \frac{H}{\pi} \left(\cos \frac{\pi \delta}{H} - \cos \frac{\pi (z+\delta)}{H} \right)$	См. табл. 5.5
0,35м Массовое паросодержание (относительная энтальпия) по высоте канала	$x(z) = \frac{i_n(z) - i'(z)}{i''(z) - i'(z)}$	См. табл. 5.5
Линейный тепловой поток по высоте канала, Вт/м	$q_l(z) = q_{l,0} \sin \frac{\pi(z+\delta)}{H}$	См. табл. 5.5
Тепловая нагрузка по высоте канала, Вт/ м	$q(z) = 0,94 q_l(z) / \Pi_{\text{тепл}}$	См. табл. 5.5
Относительная энтальпия в точке начала закипания, где:	$x_{\text{H.K.}} = -0.49 \left(\frac{q(z)}{\rho'\omega_0 r}\right)^{0.3} \text{Re}_q^{0.4} \left(\frac{p}{p_{\text{kp}}}\right)^{0.15}$	-0,041
число Рейнольдса	$\operatorname{Re}_{q} = \frac{(q/\rho' r)\sqrt{\sigma/[g(\rho'-\rho'')]}}{\nu'}$	
критическое давление, Па	$p_{\rm kp}=2,2115\cdot 10^7$	
координата точки начала кипения _{Zн.к} , м	$z_{\text{h.k.}} = z_i + \frac{x_i - x_{\text{h.k.}}}{x_i - x_{i-1}} \Delta z$	-1,3
истинное объемное паросодержание в точке с координатой <i>z_n</i>	$\varphi_n = 0.43 \left(\frac{q(z)}{\rho'\omega_0 r}\right)^{0.15} \text{Re}^{0.2} \left(\frac{p}{p_{\text{kp}}}\right)^{-0.255}$	0,17

1	2	3
Истинное объемное	$\omega(z) = \omega_{x} \left(1 - \frac{x(z)}{z} \right)$	См. табл. 5.5
паросодержание на участке от <i>z</i> _{нк}	$\psi(2) \psi_n \left(1 X_{\text{H.K}} \right)$	
ДО <i>Z</i> _n		
Объемное расходное паросодержание в области <i>x</i> >0, при котором начинается равновесное кипение	$\beta_{\rm p} = 3,22 \left(\frac{q}{\rho'\omega_0 r}\right)^{0,2}$	См. табл. 5.5
Массовое паросодержание в точке начала равновесного кипения	$x_{\rm p} = \frac{1}{1 + \frac{1 - \beta_{\rm p}}{\beta_{\rm p}} \frac{\rho'}{\rho''}}$	0,06
Координата точки начала равновесного кипения <i>z</i> _p , м	$z_p = z_i + \frac{x_p - x_i}{x_{i+1} - x_i} \Delta z$	
Коэффициент проскальзывания в точке <i>z</i> _p ,	$s_p = 1 + rac{0.6 + 1.5 eta_p^2}{\mathrm{Fr}^{0.25}} \left(1 - rac{p}{p_{\mathrm{kp}}} ight)$	0,8
где: число Фруда скорость смеси, м/с	$Fr = \omega_{\rm CM}^2 / g d_{\rm F}$ $\omega_{\rm CM} = \omega_0'' - \omega_0'$	1,2
приведенная скорость пара, м/с	$\omega_0' = \omega_0'' (1 - \beta) / \beta$	
Расходное объемное паросолержание в на участке <i>z>z</i> _n	$\beta(z) = \left[1 + \frac{[1 - x(z)]\rho''}{x(z)\rho'}\right]^{-1}$	
Истинное объемное паросодержание [*] на участке <i>z</i>	$\varphi(z) = \left[1 + \frac{1 - x(z)}{x(z)} s \frac{\rho''}{\rho'}\right]^{-1}$	0,5
Массовое паросодержание в точке <i>z_n</i> Определение потери давления	$x_n = \frac{1}{1 + \frac{1 - \varphi_n}{\varphi_n} \frac{\rho'}{\rho''}}$	См. табл. 5.5
по высоте испарительного канала	$\Delta p = \Delta p_{\kappa} + \Delta p_{{\scriptscriptstyle \Pi}.\kappa} + \Delta p_{{\scriptscriptstyle P}.\kappa}$	0,0129
Потеря давления на конвективном участке (от <i>z</i> =0	$\Delta p_{\kappa} = \sum_{i} \left(\xi_{\mathrm{Tp},\kappa_{i}} \frac{\Delta z_{\kappa_{i}}}{d_{r}} + \xi_{\mathrm{M},\kappa_{i}} \right) \frac{\omega_{0}^{2}}{2} \rho_{\kappa_{i}} +$	$326,7.10^{3}$
до _{<i>z</i>н.к}), Па	+ $\sum_{i} g \rho_{\kappa_{i}}$, где $\xi_{\text{тр.}\kappa_{i}} = 0,035$ – на всех участках без исключения; $\xi_{\text{м,}\kappa_{i}} = 0,4$ – в пределах каждого участка, за исключением Δz_{10} и Δz_{11} , в пределах которых $\xi_{\text{гл.}} = 1,15$ (32)	57,9·10 ³
	счет местного сопротивления в зазоре между верхней и нижней ТВС)	

1	2	3
Потеря давления на участке	$\Delta p_{\text{п.к}} = \sum_{i} \Delta p_{\text{тр,п.к}_{i}} + \sum_{i} \Delta p_{\text{м,п.к}_{i}} +$	$82,83 \cdot 10^3$
поверхностного кипения(от <i>z</i> _{н.к}	$\sum_{i} \Delta p_{\text{уск,п.к}_{i}} + \sum_{i} \Delta p_{\text{нив,п.к}_{i}}$	
до <i>z</i> _p), Па, где:		
HOTANG UN TRAILUS D HRANANOV	$\Delta p_{\text{TD II K}_{i}} = \Delta p_{\text{TD II K}_{i}}^{6.0} \left[1 + 18.5 \left(\frac{q_{i}}{\prime \prime} \right)^{0.7} \right]$	
кажлого участка Па	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	$39.84 \cdot 10^3$
hundere y herra, m	$\Delta p_{\mathrm{Tp},\Pi,\kappa_{i}}^{0.0} = \xi_{\mathrm{Tp}} \frac{1}{d_{\mathrm{r}}} \left[1 + x_{i} \left(\frac{1}{\rho''} - 1 \right) \right] \frac{1}{2} \rho'$	39,0110
потеря на местное	$\Delta p_{\mathrm{M,D,K_i}} = \xi_{\mathrm{M_i}} \left[1 + x_i \left(\frac{\rho'}{\mu} - 1 \right) \right] \frac{\omega_0^2}{2} \rho'$	$19,53 \cdot 10^3$
сопротивление, Па	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	
	$\Delta p_{\text{VCK},\Pi,K_i} = \frac{\omega_0^2}{\omega_0^2} \rho' \frac{2\Delta \phi_i \left(1 - \frac{1}{\rho'}\right)}{(1 - \frac{1}{\rho'})},$	
потеря на ускорение, Па	$1 - \Delta \varphi_i \left(1 - \frac{\rho^{\prime \prime}}{\rho^{\prime}} \right)^{\prime}$	$9,28 \cdot 10^{3}$
	где $\Delta \phi_i$ – приращение истинного	
	объемного паросодержания на <i>і</i> -м	
	участке	
	$\Delta n = a \Delta z$	
нивелирная составляющая, Па	$\Delta p_{\text{HUB,R.K}} = g p_{\text{CM},i} \Delta z,$	$14,18 \cdot 10^{3}$
	$12e \rho_{CM,i} - \rho \ \phi_i + \rho \ (1 - \phi_i)$	
	$\Delta m = \sum \Delta m = - \sum \Delta m = - 1$	См. тобт. 5.5
развитого кипения	$\Delta p_{\mathrm{p.K}} = \sum_{i} \Delta p_{\mathrm{Tp,p.K}_{i}} + \sum_{i} \Delta p_{\mathrm{M,p.K}_{i}} +$	См. 1аол. 5.5
Product of the terminal		
	$+\sum \Delta p_{\text{yck},\text{p.k}_i} + \sum \Delta p_{\text{HUB},\text{p.K}_i}$	
Потеря на трение. Па	$\Delta z \left[\left(o' \right) \right] \omega^2$	
потеря на трение, па	$\Delta p_{\mathrm{TP,p,K}_i} = \xi_{\mathrm{TP}} \frac{\Delta z_i}{d} \left[1 + x_i \left(\frac{p}{p''} - 1 \right) \right] \frac{\omega_0}{2} \rho'$	$186 \cdot 10^{3}$
		100 10
Потеря на местное	$[(\rho')] \omega_0^2$	
сопротивление, Па	$\Delta p_{\mathrm{M,p.K}_{i}} = \xi_{\mathrm{M}_{i}} \left[1 + x_{i} \left(\frac{1}{\rho''} - 1 \right) \right] \frac{1}{2} \rho'$	$111 \cdot 10^{3}$
	1 -	
Потеря на ускорение. Па	$2\Delta \alpha \left(1 - \rho''\right)$	
	$\Delta n = -\frac{\omega_0^2}{\alpha'} \alpha' \frac{2\Delta \psi_i \left(1 - \frac{1}{\rho'}\right)}{\alpha'}$	$45 \cdot 10^{3}$
	$\Delta \rho_{\text{yck,p.k}_i} = \frac{1}{2} \rho \frac{1}{1 - \Delta \rho \left(1 - \rho''\right)}$	15 10
	$1 - \Delta \Psi_i \left(1 - \frac{1}{\rho'} \right)$	
Нивелирная составляющая, Па	$\Delta p_{\text{HUB, p.K}_i} = g \rho_{\text{CM}i} \Delta z$	$5 \cdot 10^{3}$
высоте канала	Определяется по энтальпии и	
	давлению в пределах каждого	
	y 1001Ka	

1	2	3
	$\alpha = \frac{\lambda}{\rho Pr}$	
Коэффициент теплоотдачи, Вт/(м ² К)	αp.κ = cpρ'ωcmSt	$65 \cdot 10^{3}$
Температура оболочки по высоте канала в зоне развитого кипения, °С	$\theta_{\rm of}(z) = \theta_{\rm T}(z) + \frac{q(z)}{\alpha_{\rm p.K}(z)}$	См. табл. 5.5
Критический тепловой поток, Вт/м ²	$q_{\rm kp} = 845 \cdot 10^3 (\rho \omega)^{0,2} (1 - 3,35 \cdot 10^{-8} p) (1 - x)^{1,2},$	См. табл. 5.5
	где $p=\Pi a; \rho \omega = \frac{G}{S_{\text{TBC}}}, \text{ кг/(м2c)}$	
Запас до кризиса теплообмена	$k(z) = \frac{q_{\kappa p}(z)}{q(z)}$	См. табл. 5.5
Температура оболочки твэла на внутренней поверхности по высоте канала, °С	$\theta_{\rm o6}^{\rm BH}(z) = \theta_{\rm o6}(z) + \frac{q_l(z)\delta_{\rm o6}}{\pi d_{\rm o6}\lambda_{\rm o6}},$	См. табл. 5.5
	где $\delta_{06} = \frac{d_2 - d_1}{2}$, $d_{06} = \frac{d_2 + d_1}{2}$, $\lambda_{06} = 20,6 \text{ BT/(MK)}$	0,9 · 10 ³ 12,6 · 10 ³
Температура топливного сердечника на наружной поверхности, °С	$\theta_{\rm c}^{\rm H}(z) = \theta_{\rm o6}^{\rm BH}(z) + \frac{q_l(z)}{\pi d_3 \alpha'},$	См. табл. 5.5
	где $d_3 = \frac{d_1 + d_0}{2}$	11,6 · 10 ³

Примечание. Расчет ведется методом последовательных приближений, для чего задают величину z_n , определяют q_l , b и по формуле подсчитывают z_n . Итерации ведутся до тех пор, пока z_n заданное не будет равно подсчитанному (с точностью, например, до 1%).

Название Численные значен					чения		
параметра	-3,5	-3	-2	-1,3	-1	-0,8	-0,4
$i_{\mathrm{T}}(z)$	1160	1172	1214	1256	1276	1290	1318
x(z)	-	-	_	0	0,009	0,014	0,025
$q_{\rm l}(z)10^3$	79,7	143	252	307	324	333	345
q(z)	98,19	176,17	310,46	379,2	399,16	410,25	425,03
$\varphi(z)$	-	-	-	0	0,04	0,07	0,17
Р см, <i>i</i>	-	-	-	674	648,7	629,8	566,73
$\theta_{ob}(z)$	270	276	292	305	310	304	301
w [']	-	-	-	-	3,129	3,249	3,623
ŴO	-	-	-	-	3,004	3,05	3,015
W_{CM}	-	-	_	-	4,405	3,72	4,224
$\beta(z)$	-	-	-	-	0,032	0,18	0,287
$q_{ m \kappa p} \; 10^5$	-	-	-	2,2	-	-	-
R(z)	-	-	-	5,8	-	-	-
θ_{T}	265	267	276	285	290	293	295
$\theta_{00}^{BH}(z)$	274,6	284,24	306,52	322,7	328,7	323,2	320,9
$\theta_{c}^{H}(z)$	303,15	335,47	396,8	432,7	444,8	342,5	444,5

Численные значения параметров расчета

	0	0,4	0,8	1	2	3	3,5
$I_{\mathrm{T}}(z)$	1348	1378	1406	1420	1482	1524	1535
x(z)	0,036	0,048	0,06	0,071	0,114	0,143	0,150
$q_l(z) \cdot 10^3$	349	345	333	324	252	143	79,7
q(z)	429,96	425,03	410,25	399,16	310,46	176,17	98,19
$\varphi(z)$	0,32	0,397	0,45	0,499	0,626	0,685	0,697
$ ho_{{ m cm},i}$	472,08	423,49	390,05	-	-	-	-
$ heta_{ m o6}(z)$	-	-	-	-	300	-	297
w [°]	4,625	4,88	5,282	5,73	7,332	8,413	8,679
ŴŮ	3,145	2,943	2,905	2,871	2,742	2,65	2,63
Wсм	4,722	5,266	5,81	6,31	8,26	9,57	9,89
$\beta(z)$	0,334	0,441	0,5	0,545	0,668	0,723	0,734
$q_{ m \kappa p} \ 10^5$	2,1	-	-	2	1,9	1,8	1,8
R(z)	4,9	-	-	5,0	6,1	10	18
$\theta^{{}_{\mathrm{BH}}}{}_{\mathrm{of}}(z)$	-	-	-	-	314,53	-	301,6
$\theta_{c}^{H}(z)$	-	-	-	-	404,8	-	330,15
θ_{T}	295	295	295	295	295	295	295

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Дементьев, Б. А. Ядерные энергетические реакторы / Б. А. Дементьев. – М. Энергоатомиздат, 1990.

2. Полянский, Л. Н. Вопросы теплофизики водоохлаждаемых установок / Л. Н. Полянский. – М. : Энергоиздат, 1994.

3. Тепловой расчёт активной зоны водо-водяного реактора: методические указания к практическим занятиям, курсовому и дипломному проектированию / сост. Ю. И. Аношкин. – Н. Новгород, НГТУ, 1996.

4. Кузнецов, Ю. Н. Теплообмен в проблеме безопасности ядерных реакторов / Ю. Н. Кузнецов. – М. : Энергоатомиздат, 1989.